1 The table shows the melting points, boiling points and electrical properties of fivesubstances, A to E.

substance	melting point /°C	boiling point /°C	electrical conductivity of solid	electrical conductivity of liquid
Α	-7	59	poor	poor
В	1083	2567	good	good
С	755	1387	poor	good
D	43	181	poor	poor
E	1607	2227	poor	poor

Choose a substance from the table above to match each of the following descriptions. A substance may be used once, more than once or not at all. Justify each choice with evidence from the table.

One has been completed as an example.

	This substance is covalent and is a solid at room temperature (25 °C)D	
	evidence Its melting point is above room temperature. It has a low melting point and it doe	S
	not conduct as a liquid, so it is covalent.	
(a)	This substance has a giant covalent structure	
	evidence	
		[3
(b)	This substance is a metal	
	evidence	
		[2
(c)	This substance is a liquid at room temperature (25 °C)	
	evidence	
		[3
(d)		
	evidence	
		[3

2 Use your copy of the Periodic Table to help you answer these question	ons.
(a) Predict the formula of each of the following compounds.	
(i) aluminium uoride	[1]
(ii) arsenic oxide	
(iii) [1] (iii) silicon bromide	
(b) Deduce the formula of each of the following ions.	
(i) phosphide	
(ii) barium [1]	
(iii) francium	
(c) Draw a diagram showing the arrangement of the valency electrons in a molecule of the compound carbon dioxide.	one
Use x to represent an electron from a carbon atom. Use o to represent an electron from an oxygen atom.	
[3]	
[Total: 9]	

3	Nit	roge	n can form ionic compounds with reactive metals and covalent compounds with non-metals.
	(a)	Nitr	ogen reacts with lithium to form the ionic compound lithium nitride, Li ₃ N.
		(i)	Write the equation for the reaction between lithium and nitrogen.
		(ii)	Lithium nitride is an ionic compound. Draw a diagram which shows its formula, the charges on the ions and the arrangement of the valency electrons around the negative ion.
			Use x for an electron from a lithium atom. Use o for an electron from a nitrogen atom.
			[2]
	(b)	Nitr	rogen fluoride is a covalent compound.
		(i)	Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound nitrogen trifluoride, ${\rm NF_3}$.
			Use x for an electron from a nitrogen atom. Use o for an electron from a fluorine atom.
			[2]
		(ii)	Lithium nitride has a high melting point, 813 °C. Nitrogen trifluoride has a low melting point, –207 °C.
			Explain why the melting points are different.
			[2]
			[-]

		$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$
(a)		methods of preparing carbon monoxide are from methane and oxygen, and from methane steam.
	(i)	The reaction between methane and oxygen can also form carbon dioxide. How can carbon monoxide be made instead of carbon dioxide?
		[1]
	(ii)	The following reaction is used to make carbon monoxide and hydrogen. The reaction is carried out at 1100 °C and normal pressure.
		$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$
		The reaction is reversible and comes to equilibrium. Suggest why a high temperature is used.
		[2]
((iii)	What is the disadvantage of using a high pressure for the reaction given in (a)(ii)?
		[2]
(b)	Des	orine is made by the electrolysis of concentrated aqueous sodium chloride. Scribe this electrolysis. Write ionic equations for the reactions at the electrodes and name sodium compound formed.
		[E]
		[5]

Carbonyl chloride is made from carbon monoxide and chlorine.

(c) The structural formula of carbonyl chloride is given below.

Draw a diagram showing the arrangement of the valency electrons around the atoms in one molecule of this covalent compound.

Use o to represent an electron from an oxygen atom.

Use x to represent an electron from a chlorine atom.

Use • to represent an electron from a carbon atom.

[3]

[Total: 13]

Germanium is an element in Group IV. The electron distribution of a germanium atom is $2+8+18+4$. It has oxidation states of +2 and +4.				
(a)	Ger	rmanium forms a series of saturated hydrides similar to the alkanes.		
	(i)	Draw the structural formula of the hydride which contains three germanium atoms per molecule.		
		[1]		
	(ii)	Predict the general formula of the germanium hydrides.		
		[1]		

5

(b)	Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound germanium(IV) chloride, ${\rm GeC} l_4$.
	Use o to represent an electron from a chlorine atom. Use x to represent an electron from a germanium atom.
	[2]
(c)	Describe the structure of the giant covalent compound germanium(IV) oxide, GeO_2 . It has a similar structure to that of $\text{silicon}(\text{IV})$ oxide.
	[3]
(d)	Is the change ${\rm GeC} l_{\scriptscriptstyle 2}$ to ${\rm GeC} l_{\scriptscriptstyle 4}$ reduction, oxidation or neither? Give a reason for your choice.
	[2]
	[Total: 9]